Arginine attenuates methylglyoxal- and high glucose-induced endothelial dysfunction and oxidative stress by an endothelial nitric-oxide synthase-independent mechanism.

نویسندگان

  • Indu Dhar
  • Arti Dhar
  • Lingyun Wu
  • Kaushik Desai
چکیده

Methylglyoxal (MG), a reactive metabolite of glucose, has high affinity for arginine and is a precursor of advanced glycation endproducts (AGEs). We tested the hypothesis that L-arginine, and its inactive isomer D-arginine, can efficiently scavenge MG, administered exogenously or produced endogenously from high glucose, and attenuate its harmful effects including endothelial dysfunction and oxidative stress by an endothelial nitric-oxide synthase (eNOS)-independent mechanism. We used isolated aortic rings from 12-week-old male Sprague-Dawley rats and cultured human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). Both D-arginine and L-arginine prevented the attenuation of acetylcholine-induced endothelium-dependent vasorelaxation by MG and high glucose. However, the inhibitory effect of the NOS inhibitor N(ω)-nitro-L-arginine methyl ester on vasorelaxation was prevented by L-arginine, but not D-arginine. MG and high glucose increased protein expression of arginase, a novel finding, NADPH oxidase 4, and nuclear factor κB and increased production of reactive oxygen species in HUVECs and VSMCs, which were attenuated by D-arginine and L-arginine. However, D-arginine and L-arginine did not attenuate MG- and high glucose-induced increased arginase activity in VSMCs and the aorta. D-arginine and L-arginine also attenuated the increased formation of the MG-specific AGE N(ε)-carboxyethyl lysine, caused by MG and high glucose in VSMCs. In conclusion, arginine attenuates the increased arginase expression, oxidative stress, endothelial dysfunction, and AGE formation induced by MG and high glucose by an eNOS-independent mechanism. The therapeutic potential of arginine against MG- and high glucose-induced pathology merits further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

High glucose attenuates protein S-nitrosylation in endothelial cells: role of oxidative stress.

OBJECTIVE Hyperglycemia-induced endothelial dysfunction, via a defect of nitric oxide (NO) bioactivity and overproduction of superoxide, is regarded as one of the most significant events contributing to the vascular lesions associated with diabetes. However, the mechanisms underlying such hyperglycemic injury remain undefined. We hypothesized that alterations in cellular protein S-nitrosylation...

متن کامل

Aristotelia chilensis, rutin and quercetin amielorates acute vascular endothelial dysfunction in rat thoracic aorta exposed to oxidative stress

The role of endothelial dysfunction (ED) and excessive oxidative stress in the development of cardiovascular diseases has recently been highlighted. The present study examined the effect of a hydro-ethanolic extract of a Chilean berry Aristotelia chilensis (folk name “maqui), and its flavonoids antioxidants rutin (RT) and quercetin (QC), on the responsivity of blood vessels exposed to oxidative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 342 1  شماره 

صفحات  -

تاریخ انتشار 2012